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ABSTRACT

:The hybrid experimental-numerical stress analysis techniques which saw

limited applications during the 1950's, has been resurrected with the vastly

improved numerical techniques of the 1970's. By inputing the experimental

results as initial and boundary conditions* modern computer codes can be

executed in its generation and application modes to yield results which are

unobtainable when only one of the two techniques is used. The hybrid tech-

nique thus exemplifies the complementary role of the experimental and numer-

Ical techniques. C..

INTRODUCTION

One of the frustrations uf an experimental stress analyst is the lack of

a universal experimental procedure which solves all problems. Referred to as

his second principles Durelli states that *Seldom does one method give a

complete solution, with the most efficiency E13". Examples of this second

principle is seen in photoelastic coating and brittle coating techniques which

~fr2 7 0 ional strain gage testing in locations of high stress concentra-

41 Lby these two techniques. The hybrid experimental-numerical

4usaftbi ehnique is an aberration of the above where numerical tA

nal ss the second experimental method. V

an rly applications of the hybrid experimental-numerical stress,#

technique were limited to separations of two- and three-dimensional Jet
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stress in photoelastic specimens. The first stress invariant obtained through

a finite difference solution to the compatability equation and the maximum

shear stress distribution provided by the isochromatics yielded the two planar

components of the principal stresses (2,3,4). The shear-difference method

E2,53 and the Flon's method E6,73 used the Isochromatic and isoclinic data

to Integrate the equilibrium equations along a straight line and a stress tra-

jectory, respectively. These single-purpose numerical techniques thus

provided only the stresses along a specified integration path.

In contrast to the above, the modern super codes based on finite element

method, boundary element method and finite difference method yield the com-

plete states of stress, strain and displacement for the given constitutive

relations and boundary and initial conditions. The uncertainty or the lack of

knowledge in these given conditions, however, limited the accuracy of the

otherwise voluminuous outputs of these super codes. Inaccurate numerical

modeling procedures generated results with obvious errors and are credited for

the resurgence of three dimensional photoelasticity in the 1970's. The hybrid

experimental-numerical stress analysis technique of today reduces, if not

eliminates, the above uncertainties in prescribed input conditions by using

experimentally determined boundary and initial conditions. The output from

the otherwise proven numerical techniques are either the constitutive relation

or the complete states of displacement, strain and stress which cannot be

readily extracted through the use of a single experimental technique in stress

analysis. Thus, the hybrid experimental-numerical technique ftsan extremely

efficient stress analysis technique which often provides more information than

needed. The full potential of the hybrid technique. however, It yet to be

exploited because of the historic dichotomy between the theoreticians-turned

numerical analysts and the experimental ists.

22: j, ', __I _ 2 ' mfl '



In the following, the util'ty of the hybrid experimental-numerical stress

analysis technique will be demonstrated by same stress analysis problems

involving two- and three-dimensional structural components# biomechanics and

fracture mechanics.

.4

ELASTIC ANALYSIS OF STRUCTURAL COMPONENTS

The numerical techniques used In modern hybrid technique for structural

analysis are vastly superior to their predecessors since they provide the

entire states of stress, strain and displacements. As a straight forward

extension of the classical hybrid technique, Rao [8] used measured tempera-

ture and surface traction data to solve, by the finite difference method, the

Beltrami-Michell stress equations of compatiblity interior to an axisymmetric

solid. Figure la shows the end retailing ring, which is shrink-fitted to the

two ends of the vector and which is used to contain the end loops of rotor

windings, in a turbo-generator. The distributions of hoop stress, which is

generated by shrink fitting and the centrifugal force, obtained by the hybrid

technique, three dimensional frozen stress photoelasticity and a two-dimen-

sional analog are shown in Figure lb. The utility of this hybrid technique is

demonstrated by the author's quote of "The time-needed for the analysis is

smaller than that required by the time-consuming and tedious shear-difference

methods" E8J.

Figure 2 shows a water turbine wheel and its curvilinear finite differ-

ence grid representation which was analyzed by Barishpolsky E9]. Frozen

stress photoelasticity was used to determine the stress tensor on the complex

boundaries. These boundary values were input to the curvilinear finite dif-

ference equations for three-dimensional elasticity where the number of equa-

tions equalled the number of nodes and thus reduced the computational time by
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rthree to six folds over standard finite difference codes. The procedm. Is,

Al extended to steady state, three-dimensional problems where measured surfame

temperature must be input In addition to the measured surface tractions [10].

While the specialized codes used in the above hybrid techniques are coi-

putationally more efficient by desiga off-shelf codes In finite element and

boundary element methods are often used for sheer expediencies. For an

elasto-static problem, the boundary element method is more omputationally

efficient and natural where the input data consists of experimentally deter-

1 mined boundary displacements and traction., When used together with the

double exposures laser speckle interforometryp Nthe measured surface dis-

placements become the input data needed in the boundary element method to cal-

culate the traction vectors at specified points on the boundary [113w as well

as in the interior of the body. Moslehy and Ranson t11] demonstrated the

utility of this hybrid technique by the excellant agreements in theoretically

and experimentally obtained stresses interior to a cantilever beam with a

transverse end load. In a similar application of the hybrid technique# Balas,

Sladek and Drzik [123 used the double-aperture# laser speckle interferometry

and demonstrated the advantage of the hybrid technique by analyzing only the

region of Interest of a plate-stiffened frame. In this cases the recorded

displacements were input to a simplified boundary# which Is represented by the

dashed lines, of the frame structure shown in Figure 3. Boundary element

method was used to determine the stress distributions along the three cross

sections shown in Figure 4.

As a variation in the above mentioned hybrid techniques Umeagukhwu Peters

and Ranson E133 used two-dimensional photoelasticity togethe with a boundary

Olsmeet code to optimize the filets in a doubled wfoth tuon plate. The

interior principal stresses obtained by the hybrid technique were Wd to
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mofe evenly distribute the load along go net section and- thus resulted in a

better understanding of the filet optimization problem.

COtNEO-Si.ERA. ENVELOPE

1The interocular pressure of a human eye is maintained at a nearly core

stant level of 15 - 20 mHg through a complex physiological system involving

the mechanical# biochemical and neurological responses of the eye E143. When

the outflow of the ocular fluid Is restricted by pathological conditions, the

ensuing increase in interocular pressure eventually results in glaucoma which

Is the direct cause of 13.5 S of the blindness In United States E153. Tonome-

try monitors this interocular pressure by measuring the exterior mechanical

response of the cornea which is Indented or flattened by a tonometer plunger.

The tonometer reading is thus affected by the mechanical response of the

pressurized corneo-scleral envelope which is essentially a pressure vessel

containing the optical and neurological components.

The mechanical properties of the cornea and sclera are difficult to ob-

tain because of the small size, delicacy and natural curvature. The commonly

used ocular rigidity (16]. which relates the pressure and volume of the

corneo-scleral envelope# is a global coefficient and is not suitable for

analyzing the local deformation process under tonometer loading. Simple

tension testings of excised strips of the cornea (17] and the sclera E18]

yielded erroneous modulus of elasticity and Poisson's ratio by the loosening

of the collagen fibrils from the soft mucopolysaccharide at the excised edges.

In order to overcome the deficiencies of the above global and local approach-

eW oo et al E19#201 developed a hybrid experimental-numerical procedure for

determining the local mechanical property of an intact corneo-cleral

envelope,
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Woo's experimental procedure consisted of measuring the c6rn Snd oclra

deformations as well as the volume changes of pressurized anterior sem911 o

enucleated human eyes. A flying spot scanner was used to measure the reltive,

motions of two white targets on the cornea or sclera which were mounted on 'a

McEwen-type chamber (21]. Woots numerical procedure consisted of matching,

through trial and error the measured and computed deformations and volume

changes. A pressurized axisymmetric finite element model of the anterior

segment of the corneo-scleral envelope was used to execute the finite element

code in its application mode for this purpose. The resultant isotropic,

trilinear, elastic stress-strain relations obtained for this analog model of

the corneo-scleral envelope is shown in Figure S. These trilinear stress

strain relations were incorporated into a finite element of the total eye

which was used to calculate the nonlinear intraocular pressure-volume rela-

tion. The lack of bending rigidity in the cornea under the tonameter probe

was modeled by artificially reducing the bending stiffness of the finite

elements in the compression region. With this modification, excellent

correlations between the calculated and published experimental results were

obtained C203.

The membrane shell elements, which were later used to construct the

corneo-scleral envelope, shown in Figure 6 C22]* removed the above mentioned

artificial reduction in bending rigidity in the solid elements used by Woo.

Woots experimental data 1193 was re-evaluated by this membrane shell model

which yielded slightly different distribution of elastic moduli along the

corneo-scleral shell. Such differences demonstrates the Inevitable interde-

pendence of the experimental data and numerical modeling of the hybrid

experimental-numerical technique where the finite elment model Is used as an

analog model of the experiment £233.
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The anterior portion of the membrane finite element model Was Usp used

to model the deformation process under tonometer loading. Figure 7 shows the

computed and measured E24] relations of probe force versus probe area under

applanation tonametry.

ELASTIC-PASTIC FRACTURE MECHANICS

Fracture parameters governing elastic, elastic-plastic and dynamic frac-

ture, with the exception of geometric quantities such as crack opening dis-

placements and crack tip opening angles# cannot be measured directly. InI practice. even the above geometric parameters are difficult to quantify and

are often computed by using analog models of the crack. Strain energy release

rate and stress intensity factor in linear elastic fracture mechanics, which

is a well established analog model of the crack, can be computed accurately by

,! using modern numerical codes. The various fracture packages for these codes

have be/F vertfted by a recent benchmark problem E253 and thus should provide
/

corr)t numerical solutions to well-defined boundary value problems. Once the

s ain energy release rate or stress intensity factor is determined, the onset

/of brittle fracture can be predicted if the critical values of these quanti-

ties are known. Their elastic-plastic extension, the J-integral, has also

been used with same success in predicting the onset of ductile fracture. Laws

governing other fracture phenomena, such as stable crack growth under large

scale yielding, are being investigated through empirical correlations of

fractur data with computed fracture parameters.

An approach which has been used recently to establish a stable crack

growth criterion is to input actual crack growth data as additional boundary

values to an elastic-plastic finite element code. Kanninen et al. (26] used

the finite element code in its 'generation mode' to study stable crack growth

7
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and Instability of A533-B steel and 2219-T87 aluminum center-crack and compact

specimens. A similar approach was used by Shih et al. (27] who studied stable

crack growth and instability of A533-B compact specimens. Experimentally

determined load-line displacement versus crack length relation, as shown in

Figure 8, was used to simulate crack extension in the two-dimension finite

element model shown in Figure 9. Two sets of elastic-plastic analyses based

on J2 deformation and J2 flow theories of plasticity were conducted. Figure

10 shows excellent agreements between the measured and computed applied load

versus load-line displacement relations obtained by these two numerical analy-

ses. The computed fracture parameters included the crack opening displacement

(COD)* the crack opening angle (COA), the J-integral and the rate of change of

J-integral, dJ/da. Since the fracture criterion for stable crack growth must

be independent of specimen geometry and crack extension, these fracture para-
.0 meters were then scrutinized for constancy during crack extension. Typical

dJ/da and COA variations with crack extensions obtained by Shih et al. are

shown in Figure 11 and 12, respectively. Both Kaninnen and Shih concluded

from their hybrid experimental-numerical investigations that the COA was an

attractive fracture criterion for stable crack growth in the presence of large

scale yielding.

The above studies demonstrate the utility of the hybrid experimental-

numerical technique in extracting candidate fracture parameters which cannot

be obtained directly from either the experimental or the numerical analysis

alone. The hybrid experimental-numerical technique provided computed fracture

parameters, such as J and dJ/da, under actual test conditions and not under

assumed test conditions which normally would have been prescribed in pure

Pnumerical analysis. The technique also yielded numerically consistent COD and

COA which in theory are measurable but In practice are difficult to determine.
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7%0 slautl-plastic finite element Callas with frcu okase luslding

those imattemed above, ar* yet to be subjectedO to the VigOOMe scMW4W~

leoveled on the elastic codes. The wide variations in the J-intorals, of the'

mid-1970tos E283 hopefully have, beew reduced if not eliminated to the eA st*-

plastic finite element codes of today.

DYNAMIC FRACTURE

The state of science on dynamic fracture mechanics studied with dynamic

phtolaticity has been presented by J. V. Daily in his 1979 William N.
Mu.rray Leture E293. He. noted that the crock tip state of stress provided by
dynamic photoelasticity and dynamic causticO techniques have and will continue

to enhance our understanding on the complex phenomena of dynamic crack poa

gation. Dynamic fracture studies by these techniques* however# are limited to

photolastic polymers and to plane stress problems when photolastic coatings

or-caustics are used. The hybrid experimental-numerical technique# when used

with the generation mode of f irnite, element or finite difference method will

extract dynamic fracture parameters in opaque materials as well as In non-

plane stress problems. These dynamic codes which* unlike the wellI-studied

static codes* required verificalon prior to its used In dynamic fracture

mechanics. Fracture dynamic results generated by various two-dimensional

elasto-dynamic finite difference, codes E30#313I and finite element codes

E32,333 have been compared with dynamic caustic results of fracturing poly-

meric specimens £34,353. Similar verification studies have been conducted

With dynamic pOtoelaticity £361.

The verified numerical cede can alo used to check ancillary results

*#Aft by th4~to. 9j --



deduced from the original experimental results# such as the variation In input

work# which cannot be easily measurea, during the fracture process. Numeri-

cal analysis also provides the transient energy partition for the input

boundary and initial conditions. Such energy partition can then be used to

* check the hypothesis used in deducing the experimentally determined energy

partition. The legend of Figure 13 shows an internally notched, semicircular

photoelastic specimen which was loaded with end rotation and shear deformation

[37]. The reported dynamic fracture toughness versus crack velocity relation

[29) was used as a dyanmic fracture criterion to execute a dynamic finite

element code in its application mode which yielded the crack propagation and

dynamic stress intensity factor histories [38) which are in good agreement

with the numerical results. Having verified the numerical modeling of the

photoelastic experiment, the energies during crack propagation were computed

and plotted as shown in Figure 14. The internal consistency In the computed

energy partition verifies the basic postulates of negligible viscoelastic

damping and negligible energy dissipation at the finite specimen boundaries

during the dynamic crack propagation period.

A relatively simple application of the hybrid technique is the determina-

tion of the dynamic stress intensity factor in an impacted notch bend speci-

men. Measured time variations in the striker load were input to the finite

element model of a dynamic finite element code which was then used to compute

the time variations in the dynamic stress intensity factor E40]. The numeri-

cal code was also verified by comparing the computed and measured dynamic

strains near the crack tip as shown in Figure 15. Figure 16 shows the vari-

ations in dynamic and the corresponding static stress intensity factors with

time prior to the crack propagation. These results show the inadequacy of the

static stress intensity factor which was computed by using a static formula
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- and the instantaneous striker load. It also indicates the futility in Inter-

preting such impact fracture response without the use of proper dynamic

analysis [41]. As a verification of codes, Figure 17 shows the agreement

between three independent dynamic fracture analyses of another impacted three

point bend specimen (42].

Figure 18 shows a wedge loaded, modified-tapered double cantilever beam

(WL-MTDCB) specimen which was fabricated from plate glass. The specimen was

255 side-grooved to guide the propagating crack. The flexible, long tapered

beam sections was designed to lessen the friction with the silicon carbide

loading pin. The specimen was wedge-loaded to fracture in a 500-kg Instron

testing machine and the crack extension history was recorded by a KRAK-GAGE

and associated instrumentation [43]. Figure 19 shows typical crack length

versus time data which is characterized by the unambiguous initial period of

crack acceleration and which has not been observed in dynamic fracture of

metals and photoelastic polymers. The average of the two data sets, which is

represented by a solid curve in Figure 19, was used to drive a dynamic finite

element code in its generation mode. The resultant Kdyn as well as the

static stress intensity factor, Kstat , which was also computed by finite

element analysis, are shown In Figure 20. Although it is not obvious from

Figure 20, unlike the dynamic fracture of metals and polymers, the crack never

arrested in these and other ceramics WL-MTDCB specimens E40]. Thus the Kdyh

versus a curve in Figure 21 should continue past the nominal static fracture

toughness KIC = 0.73 Mpa m as indicated by the dashed lines. Notable is the

lack of the typical gamma-shaped Kdyn versus a commonly observe in metals and

polymers.

CONCLUSION

*1 11



The hybrid experimental-numerical technique yields reliable information

which cannot be obtained by the single use of either the experimental or

numerical technique. The utility of the hybrid experimental-numerical

technique In experimental mechanics is demonstrated by case studies in two-

and three-dimensional stress analysis, biomechanics and fracture mechanics.
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Fig. 2a The Model of the Working Wheal
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